
Compiling and Linking Workflows
Condor Week 2012

Peter Bui

Cooperative Computing Lab
University of Notre Dame, IN, USA

May 2, 2012

1

Programming Distributed Systems is Hard

Distributed Systems

Campus Grid Cloud Platform

Research Challenge

How do we enable both novice and expert users to take advantage
of distributed computing resources? (Particularly for data-intensive
scientific applications).

2

Cloud Computing Approach - Abstractions
Structured way of combining small executables into parallel graphs
that can be scaled up to large sizes.

Examples

All-Pairs, Wavefront, Map-Reduce

Advantages

I Simple programming interface.

I Hides details of distributed system.

Disadvantages

I Only addresses one phase of
computation.

I Difficult to implement large
sophisticated workflows.

3

Biometrics Experiment

MapQuery

BXGrid

NEF

NEF

NEF

Convert

Convert

Convert

All-Pairs

BIT

BIT

BIT

Compare Compare Compare

Compare Compare Compare

Compare Compare Compare

BITBITBIT

1. Query: Select and extract data from scientific repository.

2. Transcode: Convert image data to new format suitable for
analysis.

3. Comparison: Perform All-Pairs computation on new image
data.

4

Grid Computing Approach - Workflows
Organize computation as a directed-acyclic-graph (DAG).

Examples

Pegasus, DAGMan, Dryad, Makeflow

Advantages

I Exploit natural parallelism.

I Program large applications
consisting of multiple phases.

I Embed/implement abstractions as
part of DAG.

Disadvantages

I Tedious, difficult to construct DAGs.

I Too low level.

5

Biometrics Experiment (DAG)

TIFF TIFF TIFF Convert

Map Map Map

BIT BIT BITCompare

All-Pairs All-Pairs All-Pairs

All-Pairs All-Pairs All-Pairs

All-Pairs All-Pairs All-Pairs

Score Score Score Score Score Score

Score Score Score

I Map: O(n) tasks.

I All-Pairs: O(n2) tasks.

I Large workflows require many nodes.

6

Proposed Approach - Compiler

Proposition

We need a compiler for distributed workflows will combines the
programming ideas from both grid and cloud computing.

Observations

1. DAGs are the assembly language of distributed computing.
Provide mechanism for constructing and executing large
distributed applications.

2. Abstractions are the SIMD instructions.
Provide powerful compact way to express a common pattern
of computation.

7

Compiler Overview

Weaver is a high-level compiler framework that allows users to
construct distributed workflows.

Unique Features

I Built on top of Python programming language.

I Enables users to combine abstractions to construct workflows.

I Applies various compiler techniques to workflow
construction.

I Includes additional utilities such as linkers and profilers to
provide a complete programming toolchain.

8

Programming Model

Datasets Functions

Abstractions Nests

9

Biometrics Experiment

1 db = MySQLDataset('db', 'biometrics ', 'irises ')
2 irises = Query(db, db.c.state == 'Enrolled ',
3 Or(db.c.color == 'Blue',
4 db.c.color == 'Green '))
5

6 convert = ParseFunction(

7 'convert_iris_to_template {IN} {OUT}')
8 compare = ParseFunction(

9 'compare_iris_templates {IN} > {OUT}')
10

11 bits = Map(convert , irises , '{BASE_WOEXT }.bit')
12 results = AllPairs(compare , bits , bits)

13 table = Merge(results , 'table.txt')

10

Software Stack

Weaver

Makeflow

Local, Condor, SGE, WorkQueue

Python

DAG

Jobs

11

Optimizations

Stash

0 1 E F

0 1 E F 0 1 E F

0000 _Stash/0/0/0000 3FFF_Stash/F/F/3FFFF

(a) Intermediate Files

Generic All-Pairs Optimized All-Pairs

All-Pairs Native Tool

All-Pairs Sub-DAG

(b) Instruction Selection

Hierarchical Nest

Flat Nest

(c) Hierarchical Workflows

Generic Inlined Tasks

Sub-DAG Sub-DAG

(d) Inlined Tasks

12

Instruction Selection

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 100 200 300 400 500 600 700 800 900 1000

R
u

n
n

in
g

 T
im

e
 (

S
e

c
o

n
d

s
)

Size of Input Dataset (x2)

X Cancelled after 50% progress

Generic
Native

13

Inlined Tasks

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Number of Inlined Tasks

Local
Condor

WorkQueue

14

Toolchain

Linking

I Application Linker: Package applications for portable
distribution and execution.

I Workflow Linker: Intelligently modify paths in DAG.

Profiling

I Analyze: Export provenance information into a variety of
formats.

I Monitor: Report workflow execution information in a
user-friendly manner.

I Report: Provide statistics and summaries of workflow.

15

Application Linker

Executables

Libraries

Data Files

Starch

Template Shell
Script

Application
Archive

Standalone
Application Archive

Environment
Scripts

 0

 10

 20

 30

 40

 50

 60

 70

 80

Convert Starch Starch_Keep

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

Starch Benchmark Workflow

16

Transcoding Workflow

BXGrid

transcode.py Weaver

Condor Pool

Worker
Worker

Worker
Worker

DAG
Makeflow

WorkQueue

Parrot

ChirpChirpChirp

17

Summary
Having access distributed computing resources is great, but we
must provide tools and support for both novice and expert users to
take advantage of these systems.

Weaver
Programming toolchain that includes a compiler for translating
workflows written in Python DSL into Makeflow DAGs, linkers for
packaging components and entire workflows, profilers for
analyzing and monitoring workflows.

CCTools

I Makeflow: Workflow manager for parallel and distributed
systems.

I WorkQueue: Light-weight master-worker framework.

I Chirp: Unpriviledged network personal filesystem.

I Parrot: Transparent adapter for remote filesystems.

18

Questions?

CCTools
http://cse.nd.edu/~ccl/software

Collection of distributed computing software.

Weaver
http://bitbucket.org/pbui/weaver

Distributed Workflow compiler for Makeflow.

python-cctools

http://bitbucket.org/pbui/python-cctools

Collection of CCTools utilities in Python.

19

http://cse.nd.edu/~ccl/software
http://bitbucket.org/pbui/weaver
http://bitbucket.org/pbui/python-cctools

